Advice on becoming a
full-stack ML practitioner

Olivier Nguyen, Applied Research Scientist @ElementAl

October 28, 2019

E L E M E N T Al Element AI Copyright e 2019 Strictly Confidential

I About me - Olivier

Applied Research Scientist @ Element Al
Building Al products, integrate models in production
Worked on applied research for document information extraction

Previously

o MAsc ECE @ University of Waterloo (2018)
o Computer Engineering @ Concordia University (2016)

Agenda

01

02
03

04

Overview of ML products

Running experiments

Coding tips

Testing, debugging models

Applied research in machine learning and deep learning

Research Products, libraries,
reusable components

e Write code quickly
Run and iterate on
experiments
Compare various methods
Demo webapps/proof of >
concepts

Deploy models
Track and measure
performance

Speed and efficiency
Robust and reliable

Perception: ML Products are mostly about ML

Data
Verification

Machine Resource
Management

Data Collection

Serving
Infrastructure

Configuration

Feature
Extraction

Monitoring

Process Management Analysis Tools

Tools

Source: Building ML Products With Kubeflow (Kubecon 2018)

[E} Element AI | Copyright e 2819 | Strictly Confidential

https://static.sched.com/hosted_files/kccnceu18/c2/Building%20ML%20Products%20With%20Kubeflow%20%28Kubecon%202018%29%20%281%29.pdf

B Files O New '9 Log Q Find "' Settings & anaconda.ipynb x 4 ,

File Edit View |Insert Cell Kernel Help Trusted|Python3(Anaconda)oﬁ
+ x @ B 4+ ¥ O C A A » = Code v
In [71: | import pandas as pd
In [8]: | pd.DataFrame.from dict({'a': [1,2,3]})
a
01
12
2|3
Out[8]:
In [9]: import tensorflow as tf
tf

OQut[9]: <module 'tensorflow' from '/projects/anaconda3/lib/python3.5/site-packages/tens;

In [10]: hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

a = tf.constant(15)
b = tf.constant(33)
print(sess.run(a + b))

b'Hello, TensorFlow!'
48

E

| Also common expectation...

Element AI | Copy

Metrics

15.0%

Preprocessing

Modelling

60.0%

ght © 2019 | S

25.0%

Reality: ML Requires DevOps; lots of it

Data Machine Resource
Verification Management

: Data Collection
Configuration Serving

= Infrastructure
Analysis Tools

Feature Extraction Process Management
Tools

Source: Sculley et al.: Hidden Technical Debt in Machine Learning Systems

[EYf Element AI | Copyright e 2819 | Strictly Confidential

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

I Machine learning ecosystem

e Huge amount of devops, data engineering

e Many companies are NOT Al ready

THE DATA SCIENCE
HIERARCHY OF NEEDS

Al,
DEEP
LEARNING

A/B TESTING,

LEARN/OPTIMIZE EXPERIMENTATION,
SIMPLE ML ALGORITHMS
ANALYTICS, METRICS,

AGGREGATE/LABEL SEGMENTS, AGGREGATES,

FEATURES, TRAINING DATA
EXPLORE/TRANSFORM CLEANING, ANOMALY DETECTION, PREP
MOVE/STORE
COLLECT

Source: The Al Hierarchy of Needs

E} Element AI | Copyright @ 2019 | Strictly Confidential

https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007

I Before you start throwing data to your models, check...

Distribution of inputs
o e.g.average sequence length, average pixel value etc.
e Distribution of outputs
o e.g.classimbalances
e Dataset-specific measures
e If you're in for the long run, write specific visualization tools
e Isyour data good enough?

o https://petewarden.com/2018/05/28/why-you-need-to-improve-your-training-data-and-how-to-do-it/

I Start as simple as possible - Linear models

Know when a deep neural network is needed

e Linear models are:

o Fasttotrain
o Easyto deploy

o Easytointerpret
e Gets a baseline and your entire pipeline setup
o Compare complicated models to baseline
e Feature engineering helps you know your data
o Writing rules/heuristics sucks, but it can help you figure out what you want the model to learn

e More likely to stay in production compared to a DL model

I Use sklearn Pipelines

feature_extractor = sklearn.pipeline.FeatureUnion(|
("tfidf_token_ngrams", TfidfVectorizer(ngram_range=(1,2), lowercase=False, stop_words='english')),
('char_len', CharlLengthExtractor()),
('num_words', NumWordExtractor())

1)

1r_tfidf = sklearn.pipeline.Pipeline(|
('feature_extraction', feature_extractor),
('logistic_regression', GridSearchCV(
LogisticRegression(penalty="12"), param_grid=params))

D

newsgroups_train.data
newsgroups_train.target

X: List[str]
y: List[int]

scores = cross_val_score(lr_tfidf, X, y, cv=5, n_jobs=-1)

I Starting simple - Deep learning models

e Don't worry about code duplication - Refactor later!

e Overfit on your training set

o Can the network memorize the dataset?

train_dataset = datasets.ImageFolder(root='image_data/train', transform=data_transform)

train_loader torch.utils.data.DatalLoader(train_dataset,
batch_size=4,
pin_memory=True,

num_workers=4)

valid_loader = torch.utils.data.Dataloader(train_dataset[:100],
batch_size=4,
pin_memory=True,
num_workers=4)

I Use model configs

e Use configs to define your experiments

: : - del_config. j
e Save them on disk during training modes-contig.Json

"epochs": 100, {
"checkpoint_path": "/ckpts/" "epochs": 100,
"model": { "checkpoint_path": "/ckpts/"
"embedding": { "model”: {
"glove": { "embedding": {
"embedding_dim": 100 "glove": {
I "embedding_dim": 100
. . . "seq_representation": { b
$ python train.py -c model_config.json "LSTH" : "seq_representation”:
"dropout": 0.5 [::::::i> "GRU": {
} "dropout": 0.5
} }
H }
"decoder": { I
"hidden_dims": ["decoder": {
100 "hidden_dims": [
| 100
}]
} }
} }

I Running experiments

e State a hypothesis clearly and design experiment before launching jobs
e Use version control for your experiments

e Run controlled experiments (Test only one thing at a time)

Experimenter -| git SHA Background Search Method Model Dataset Train Acc Validation Acc Notes

Pradeep fc8d6ca3 Lucene QAMNS (50d) Intermediate 0.3114 0.3045 patience=20

Pradeep fc8d6ca3 Lucene QAMNS (300d) Intermediate 0.8317 0.3864 patience=20
BOW-LSH question+answers

Pradeep fc8d6ca3 Glove 50d QAMNS (50d) Intermediate 0.3008 0.35 patience=20

BOW-LSH question+answers
Pradeep fc8d6ca3 Glove 50d QAMNS (300d) Intermediate 0.7466 0.4227 patience=20

| Log as much as you can

e You should be logging your inputs, not just your outputs

e You should know

o

o

O

How many examples there are

How many batches that corresponds to

How many batches constitute an epoch

2019-10-089T16:03:50.753265Z [info
2019-10-09T16:04:27.073436Z [info
2019-10-09T16:04:28.656882Z [info

100% | EEEEENN | 06/96 [00:08<00:00, 11.

Validation batch time

> total: 2407.14 ms
:1242.78 ms

input
to_device
model
loss
> other
2019-10-089T16
2019-108-09T16
2019-10-09T16
2019-10-09T16
2019-10-09T16
2019-10-09T16
2019-108-09T16

V V.V V

: 118.93 ms
: 76.29 ms
: 968.16 ms

. 0.
37.
37.
37.
37.
37.
.8750897
.8777097Z

104
104
104
104
104
104
104

43
43

98 ms

5029482
5086947
5193042
6509257
6919837

[info
[info
[info
[info
[info
[info
[info

]
]
]

—————— Epoch 63 ------

> [Training] Detection Loss: ©.018

Post Metrics ok trial_id=963377
35it/s, Detection Loss=0.0869]

> [Validation] Detection Loss: 0.087

Early stopping...

Loading checkpoint from <_io.BufferedReader name='/checkpoints/loss=0.001.pth"'>
Post Metrics ok trial_id=963377

Checkpoint loaded, serializing...

Serialized to /checkpoints/serialized_model.pklz

The experiment succeeded!

| Keep an eye on the GPU utilization

2019-01-12 00:
—gpub: 99%

18:00

== gpu_6.total = gpu_6.used

oty Mt Nt s U A A LA L W) A M, ,,A.w“l:,,.v,‘..w

18:00 19:00 23:00 00:00

I Structure your checkpoint directories

e Group your artifacts under the same place

checkpoints/

— weights/

| }— loss=0.03.pth

| L— loss=0.005.pth
— config.yaml

— predictions.json

— serialized_model.pklz

I Experiment tracking tools

e Need to reproduce, track and measure model development

e Check out MLFlow

e Also: Sacred, Neptune.ml, wandb, comet.ml

iris > Run 0a6036f6c251459883b5ada013223bc3 ~

Date: 2019-07-26 10:30:21 Run ID: 0a6036f6c251459883b5ada013223bc3 Source

thomas on: 0.8s
v Notes [4
Best version so far
» Parameters
» Metrics
» Tags
~ Artifacts

Biris.csv Full Path: fil

as/Doc! e /mifl

B logreg joblib Size: 4.64KB

Sepallength, SepalWidth, PetalLength, PetalWidth, Species

1,3.5,1.4,0.2,Iris-setosa
9,3.0,1.4,0.2,Iris-setosa
7,3.2,1.3,0.2,Iris-setosa
6,3.1,1.5,0.2,Iris-setosa
0,3.6,1.4,0.2,Iris-setosa
4,3.9,1.7,0.4,Iris-setosa
6,3.4,1.4,0.3,Iris-setosa
0,3.4,1.5,0.2,Iris-setosa
4,2.9,1.4,0.2,Iris-setosa
1.5,0.1,Iris-setosa
1.5,0.2,Iris-setosa
1.6,0.2,Iris-setosa
,1.4,0.1,Iris-setosa
1.1,0.1,Iris-setosa
1.2,0.2,Iris-setosa
1.5,0.4,Iris-setosa
1.3,0.4,Iris-setosa
1.4,0.3,Iris-setosa
1.7,0.3,Iris-setosa
1.5,0.3,Iris-setosa
1.7,0.2,Iris-setosa
1.5,0.4,Iris-setosa)

MULMLUMUUEABUABUBEUL S S S
S

QTraining.py

3

is/miruns/1/0a6036f6c251459883b5ada013223bc3/artifacts/iris.csv

I Training pipeline - Keep it simple!

e Avoid rewriting code; leverage open-source libraries
e For PyTorch, check out Lightning, Fast.ai, Ignite

for epoch in range(num_epochs):
for batch in trainloader:

inputs, labels = batch
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

model = CoolModel()
exp = Experiment(save_dir=os.getcwd())

trainer = Trainer(experiment=exp,
max_nb_epochs=1,
train_percent_check=0.1)

trainer.fit(model)

[} Element AI | Copyright 2019 | Strictly Confidential

20

I Document and test your DL models

e Comment for tensor shapes

e Use unit tests while implementing your model

def dot_product_attention(q, k, v, bias, dropout, return_weights=False):
d_k = g.size(-1)
[batch, length, hidden_dim] x [batch, hidden_dim, length] -> [batch, length, length]
logits = torch.bmm(q, k.transpose(1, 2).contiguous())

Scale the keys to prevent large values and vanishing gradients
See 3.1.1 in Attention is All You Need
logits /= math.sqrt(d_k)

if bias is not None:
logits += bias
size = logits.size()
weights = F.softmax(logits.view(size[@] * size[1], size[2]), dim=1)
weights = F.dropout(weights, dropout)

[batch_size, length, length]
weights = weights.view(size)

[batch_size, length, hidden_dim]
return torch.bmm(weights, v), weights

I Testing deep learning models

e Use test fixtures - Keep a subset of the data in a repo and run tests on them.

_TEST_DATASET_DIR = Pathlib("tests/fixtures/dataset")

L— tests/
L— fixtures/ @pytest.fixture
L— dataset/ def dataset():

— labels. json labels = json.load(open(_TEST_DATASET_DIR / "labels.json"))

F— train/ train_files = glob.glob(_TEST_DATASET_DIR / "train/*")

| F— img-1.png valid_files = glob.glob(_TEST_DATASET_DIR / "valid/#*")

| L— img-2.png return dict(labels=1labels,

L— valid/ train_files=train_files,
F— img-3.png valid_files=valid_files)
L— img-4.png

def test_preprocess_dataset(dataset):

I Error analysis loop

e Look at your test set examples

o What is the best example?

o What is the worse example?

e Jupyter notebook with annotations

e Dump predictions after benchmarking or after training

df = json.load(open("predictions.json"))
error_analysis_entries = []
for idx, row in df.sample(5).iterrows():
entry = row.copy()
plt.imshow(entry[“filename”])
entry["notes"] = input("Enter notes about this example")
error_analysis_entries.append(entry)

all_entries_df = pd.DataFrame(error_analysis_entries)

filenames predictions label probs notes

16 imgl16.png 0 1 0.6 Catappears to be obstructed
1 imgl.png 1 1 001 Low quality image
84 img84.png 0 1 0.84 Dog looks very much like a cat
11 imgll.png 1 1 o1 There is no cat
45 img45.png 1 1 045 This cat looks different

I Some gotchas

e Lowest loss does not necessarily mean best performance

o Your model might learn things you don't want it to, and it will benchmark well

o Monitor performance with other metrics than the loss
e Make sure you have the same preprocessing steps at test time
e Mixing up your dimensions

o [batch, width, height, channels] vs. [batch, channels, width, height]

o [batch, seq_len, embedding_size] vs. [seq_len, batch, embedding_size]

I Deploy your model on a webapp - Dash

e Easy-to-use libraries like plotly.Dash make it super easy to deploy dashboard webapps in Python
e Importing your models is easy
e Visualize and test examples live

e Learnto deploy models

ilil| plotly | pash

DASH - UBER DATA APP

https://plot.ly/dash/

I Model explainability - Tips and tricks

e Plot errors vs. individual features

o E.g.am | doing well for certain parts of the input space and poorly for others?

e Consider ablating features to check whether you get expected results
o LIME

o Remove components and measure performance

Model Dev. Accuracy
Full model 42.7
token features, no similarity 28.1
all features, no similarity 37.8
similarity only, no features 27.5

Table 3: Development accuracy of ablated parser
variants trained without parts of the entitv linking

I Use docker containers

e Run code anywhere

e Make it easier to reproduce and share code

Questions?

