
Element AI | Copyright © 2019 | Strictly Confidential

Advice on becoming a
full-stack ML practitioner
Olivier Nguyen, Applied Research Scientist @ElementAI

October 28, 2019

1

About me - Olivier

● Applied Research Scientist @ Element AI

● Building AI products, integrate models in production

● Worked on applied research for document information extraction

● Previously

○ MAsc ECE @ University of Waterloo (2018)

○ Computer Engineering @ Concordia University (2016)

2

3

3

Agenda 01 Overview of ML products

02 Running experiments

03 Coding tips

04 Testing, debugging models

Applied research in machine learning and deep learning
Trade-offs for code quality and rapid development, idea validation

● Write code quickly
● Run and iterate on

experiments
● Compare various methods
● Demo webapps/proof of

concepts

Research

● Deploy models
● Track and measure

performance
● Speed and efficiency
● Robust and reliable

Products, libraries,
reusable components

4

Source: Building ML Products With Kubeflow (Kubecon 2018)
5

https://static.sched.com/hosted_files/kccnceu18/c2/Building%20ML%20Products%20With%20Kubeflow%20%28Kubecon%202018%29%20%281%29.pdf

6

Also common expectation...

7

Source: Sculley et al.: Hidden Technical Debt in Machine Learning Systems
 8

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Machine learning ecosystem

● Huge amount of devops, data engineering

● Many companies are NOT AI ready

9

Source: The AI Hierarchy of Needs

https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007

Before you start throwing data to your models, check...

● Distribution of inputs

○ e.g. average sequence length, average pixel value etc.

● Distribution of outputs

○ e.g. class imbalances

● Dataset-specific measures

● If you’re in for the long run, write specific visualization tools

● Is your data good enough?

○ https://petewarden.com/2018/05/28/why-you-need-to-improve-your-training-data-and-how-to-do-it/

10

Start as simple as possible - Linear models

● Know when a deep neural network is needed

● Linear models are:

○ Fast to train

○ Easy to deploy

○ Easy to interpret

● Gets a baseline and your entire pipeline setup

○ Compare complicated models to baseline

● Feature engineering helps you know your data

○ Writing rules/heuristics sucks, but it can help you figure out what you want the model to learn

● More likely to stay in production compared to a DL model

11

Use sklearn Pipelines

feature_extractor = sklearn.pipeline.FeatureUnion([
("tfidf_token_ngrams", TfidfVectorizer(ngram_range=(1,2), lowercase=False, stop_words='english')),
('char_len', CharLengthExtractor()),
('num_words', NumWordExtractor())

])

lr_tfidf = sklearn.pipeline.Pipeline([
 ('feature_extraction', feature_extractor),
 ('logistic_regression', GridSearchCV(
 LogisticRegression(penalty='l2'), param_grid=params))
])

X: List[str] = newsgroups_train.data
y: List[int] = newsgroups_train.target

scores = cross_val_score(lr_tfidf, X, y, cv=5, n_jobs=-1)

12

Starting simple - Deep learning models

● Don’t worry about code duplication - Refactor later!

● Overfit on your training set

○ Can the network memorize the dataset?

13

train_dataset = datasets.ImageFolder(root='image_data/train', transform=data_transform)

train_loader = torch.utils.data.DataLoader(train_dataset,

 batch_size=4,

 pin_memory=True,

 num_workers=4)

valid_loader = torch.utils.data.DataLoader(train_dataset[:100],

 batch_size=4,

 pin_memory=True,

 num_workers=4)

Use model configs

● Use configs to define your experiments

● Save them on disk during training

$ python train.py -c model_config.json

model_config.json

14

{
 "epochs": 100,
 "checkpoint_path": "/ckpts/"
 "model": {
 "embedding": {
 "glove": {
 "embedding_dim": 100
 },
 "seq_representation": {
 "GRU": {
 "dropout": 0.5
 }
 }
 },
 "decoder": {
 "hidden_dims": [
 100
]
 }
 }
}

{
 "epochs": 100,
 "checkpoint_path": "/ckpts/"
 "model": {
 "embedding": {
 "glove": {
 "embedding_dim": 100
 },
 "seq_representation": {
 "LSTM": {
 "dropout": 0.5
 }
 }
 },
 "decoder": {
 "hidden_dims": [
 100
]
 }
 }
}

Running experiments

● State a hypothesis clearly and design experiment before launching jobs

● Use version control for your experiments

● Run controlled experiments (Test only one thing at a time)

15

Log as much as you can

● You should be logging your inputs, not just your outputs

● You should know

○ How many examples there are

○ How many batches that corresponds to

○ How many batches constitute an epoch

16

2019-10-09T16:03:50.753265Z [info] ------ Epoch 63 ------
2019-10-09T16:04:27.073436Z [info] > [Training] Detection Loss: 0.018
2019-10-09T16:04:28.656882Z [info] Post Metrics ok trial_id=963377
100%|██████████ | 96/96 [00:08<00:00, 11.35it/s, Detection Loss=0.0869]
Validation batch time
 > total: 2407.14 ms
 > input : 1242.78 ms
 > to_device : 118.93 ms
 > model : 76.29 ms
 > loss : 968.16 ms
 > other : 0.98 ms
2019-10-09T16:04:37.502948Z [info] > [Validation] Detection Loss: 0.087
2019-10-09T16:04:37.508694Z [info] Early stopping...
2019-10-09T16:04:37.519304Z [info] Loading checkpoint from <_io.BufferedReader name='/checkpoints/loss=0.001.pth'>
2019-10-09T16:04:37.650925Z [info] Post Metrics ok trial_id=963377
2019-10-09T16:04:37.691983Z [info] Checkpoint loaded, serializing...
2019-10-09T16:04:43.875089Z [info] Serialized to /checkpoints/serialized_model.pklz
2019-10-09T16:04:43.877709Z [info] The experiment succeeded!

Keep an eye on the GPU utilization

17

Structure your checkpoint directories

● Group your artifacts under the same place

18

checkpoints/
├── weights/
│ ├── loss=0.03.pth
│ └── loss=0.005.pth
├── config.yaml
├── predictions.json
├── serialized_model.pklz

Experiment tracking tools

● Need to reproduce, track and measure model development

● Check out MLFlow

● Also: Sacred, Neptune.ml, wandb, comet.ml

19

Training pipeline - Keep it simple!

● Avoid rewriting code; leverage open-source libraries

● For PyTorch, check out Lightning, Fast.ai, Ignite

20

model = CoolModel()
exp = Experiment(save_dir=os.getcwd())

trainer = Trainer(experiment=exp,
max_nb_epochs=1,
train_percent_check=0.1)

trainer.fit(model)

for epoch in range(num_epochs):
 for batch in trainloader:
 inputs, labels = batch
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

Document and test your DL models

● Comment for tensor shapes

● Use unit tests while implementing your model

def dot_product_attention(q, k, v, bias, dropout, return_weights=False):
 d_k = q.size(-1)
 # [batch, length, hidden_dim] x [batch, hidden_dim, length] -> [batch, length, length]
 logits = torch.bmm(q, k.transpose(1, 2).contiguous())

 # Scale the keys to prevent large values and vanishing gradients
 # See 3.1.1 in Attention is All You Need
 logits /= math.sqrt(d_k)

 if bias is not None:
 logits += bias
 size = logits.size()
 weights = F.softmax(logits.view(size[0] * size[1], size[2]), dim=1)
 weights = F.dropout(weights, dropout)

 # [batch_size, length, length]
 weights = weights.view(size)

 # [batch_size, length, hidden_dim]
 return torch.bmm(weights, v), weights

21

Testing deep learning models

● Use test fixtures - Keep a subset of the data in a repo and run tests on them.

_TEST_DATASET_DIR = Pathlib("tests/fixtures/dataset")

@pytest.fixture
def dataset():
 labels = json.load(open(_TEST_DATASET_DIR / "labels.json"))
 train_files = glob.glob(_TEST_DATASET_DIR / "train/*")
 valid_files = glob.glob(_TEST_DATASET_DIR / "valid/*")
 return dict(labels=labels,

 train_files=train_files,
 valid_files=valid_files)

def test_preprocess_dataset(dataset):
 ...

.
└── tests/
 └── fixtures/
 └── dataset/
 ├── labels.json
 ├── train/
 │ ├── img-1.png
 │ └── img-2.png
 └── valid/
 ├── img-3.png
 └── img-4.png

22

Error analysis loop

● Look at your test set examples

○ What is the best example?

○ What is the worse example?

● Jupyter notebook with annotations

● Dump predictions after benchmarking or after training

23

df = json.load(open("predictions.json"))
error_analysis_entries = []
for idx, row in df.sample(5).iterrows():
 entry = row.copy()
 plt.imshow(entry[“filename”])
 entry["notes"] = input("Enter notes about this example")
 error_analysis_entries.append(entry)

all_entries_df = pd.DataFrame(error_analysis_entries)

Some gotchas

● Lowest loss does not necessarily mean best performance

○ Your model might learn things you don’t want it to, and it will benchmark well

○ Monitor performance with other metrics than the loss

● Make sure you have the same preprocessing steps at test time

● Mixing up your dimensions

○ [batch, width, height, channels] vs. [batch, channels, width, height]

○ [batch, seq_len, embedding_size] vs. [seq_len, batch, embedding_size]

24

Deploy your model on a webapp - Dash

● Easy-to-use libraries like plotly.Dash make it super easy to deploy dashboard webapps in Python

● Importing your models is easy

● Visualize and test examples live

● Learn to deploy models

25

https://plot.ly/dash/

Model explainability - Tips and tricks

● Plot errors vs. individual features

○ E.g. am I doing well for certain parts of the input space and poorly for others?

● Consider ablating features to check whether you get expected results

○ LIME

○ Remove components and measure performance

26

Use docker containers

● Run code anywhere

● Make it easier to reproduce and share code

27

28

28

Questions?
Slides: olinguyen.com
olivier.nguyen@elementai.com

